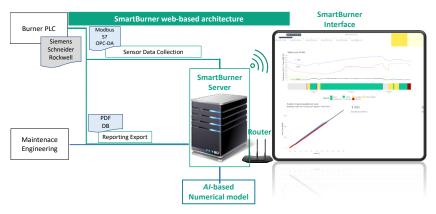


SMARTBURNER: Revolutionizing Industrial Burner Efficiency

Environmental Concern

Gas burners are widely used in metallurgy, food, chemicals, and ceramics industries. The global gas consumption market exceeds €B100, with the industrial burner market alone valued at €B3. These burners typically operate at **low efficiencies** ranging from 20% to 65%, offering significant room for improvement. They contribute to around than 10% of whole emissions. These market are expected to grow by 5% over coming years.

Customer needs: Operational Issue


Frequent malfunctions in sensors, valves, ventilators, filters, nozzles, leakage and controller parameters often lead to a gradual drift in burner efficiency. That results in significant energy waste, reduced productivity, increased CO2 emissions. Moreover, this can lead to inadequate or uncomplete gas combustion (~1%), leading to CO or NOx emissions, which carry an environmental impact ten times greater than that of CO2. The major problem is that these drifts can persist undetected for extended periods of time. The challenge is to detect these drifts and to quantify their impact on burner efficiency, making corrective action difficult.

Customer Benefit

Cost reduction Impact: Significant **direct bottom line saving** due to reduction of energy consumption

Environmental Impact: Achieve up to a 10% **reduction in CO2 emissions** and energy consumption

Operational Impact: Reduce downtimes, and boost productivity by up to 10%

Introducing SmartBurner: A Data-Driven Solution

SmartBurner is a game-changing solution that includes a **digital twin** of the burner, enriched by an advanced **deep learning** algorithm. It integrates online data acquisition, visualization, and reporting to monitor burner functionality, **detect abnormalities** and **drifts**, assess and **quantify their impact**, allowing corrective actions.

A Cutting-Edge Numerical Model Enhanced with Deeplearning

At its core, SmartBurner employs a sophisticated combination of very fast physical models and deep learning. This allows for the consideration of burner-specific physical specifications and auto-adjustment of parameters through historical data, resulting in accurate and real-time calculations.

Key Features

- Unique tool allowing real-time burner efficiency estimation based on real operational conditions
- Early detection of abnormalities and deviations
- Quantification of the energy loss and burner efficiency loss due to a detected abnormality
- Determination of root cause of a detected abnormality
- Statistical analysis for data-driven initiatives
- Auto-learning from users inputs
- Cross-technology burner comparison with using calculated efficiency and other KPIs
- Web-based user friendly interface allowing for both local and remote multi-user access
- Applicable to variety of burner technologies such as regenerative burner, oxyfuel, hydrogen

Contact us

Novamet team includes highly professional members with several years of successful experience in industrial thermal processes, ad-hoc software development:

https://www.novamet.ch/ E-mail info@novamet.ch +41 79 960 48 42